首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8084篇
  免费   1181篇
  国内免费   772篇
化学   3733篇
晶体学   92篇
力学   1508篇
综合类   54篇
数学   360篇
物理学   4290篇
  2024年   8篇
  2023年   108篇
  2022年   165篇
  2021年   184篇
  2020年   213篇
  2019年   232篇
  2018年   184篇
  2017年   240篇
  2016年   277篇
  2015年   334篇
  2014年   348篇
  2013年   1151篇
  2012年   485篇
  2011年   539篇
  2010年   384篇
  2009年   467篇
  2008年   427篇
  2007年   468篇
  2006年   426篇
  2005年   407篇
  2004年   375篇
  2003年   303篇
  2002年   277篇
  2001年   225篇
  2000年   178篇
  1999年   148篇
  1998年   176篇
  1997年   137篇
  1996年   130篇
  1995年   159篇
  1994年   122篇
  1993年   129篇
  1992年   102篇
  1991年   81篇
  1990年   56篇
  1989年   53篇
  1988年   69篇
  1987年   43篇
  1986年   39篇
  1985年   30篇
  1984年   24篇
  1983年   6篇
  1982年   22篇
  1981年   25篇
  1980年   13篇
  1979年   22篇
  1975年   5篇
  1974年   5篇
  1973年   8篇
  1972年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
《Comptes Rendus Mecanique》2019,347(4):318-331
In this essay we explore analogies between macroscopic patterns, which result from a sequence of phase transitions/instabilities starting from a homogeneous state, and similar phenomena in cosmology, where a sequence of phase transitions in the early universe is believed to have separated the fundamental forces from each other, and also shaped the structure and distribution of matter in the universe. We discuss three distinct aspects of this analogy: (i) Defects and topological charges in macroscopic patterns are analogous to spins and charges of quarks and leptons; (ii) Defects in generic 3+1 stripe patterns carry an energy density that accounts for phenomena that are currently attributed to dark matter; (iii) Space-time patterns of interacting nonlinear waves display behaviors reminiscent of quantum phenomena including inflation, entanglement and dark energy.  相似文献   
22.
环境气体的压强对激光诱导等离子体特性有重要影响.基于发射光谱法开展了气体压强对纳秒激光诱导空气等离子体特性影响的研究,探讨了气体压强对空气等离子体发射光谱强度、电子温度和电子密度的影响.实验结果表明,在10-100 kPa空气压强条件下,空气等离子体发射光谱中的线状光谱和连续光谱依赖于气体压强变化,且原子谱线和离子谱线强度随气体压强的变化有明显差别.随着空气压强增大,激光击穿作用区域的空气密度增加,造成激光诱导击穿空气几率升高,从而等离子体辐射光谱强度增大.空气等离子体膨胀区域空气的约束作用,增加了等离子体内粒子间的碰撞几率以及能量交换几率,并且使离子-电子-原子的三体复合几率增加,因此造成原子谱线OⅠ777.2 nm与NⅠ821.6 nm谱线强度随着气体压强增大而增大,在80 kPa时谱线强度最高,随后谱线强度缓慢降低.而离子谱线N Ⅱ 500.5 nm谱线强度在40 kPa时达到最大值,气体压强大于40 kPa后,谱线强度随压强增加而逐渐降低.空气等离子体电子密度均随压强升高而增大,在80 kPa后增长速度变缓.等离子体电子温度在30 kPa时达到最大值,气体压强大于30 kPa后,等离子体电子温度逐渐降低.研究结果可为不同海拔高度的激光诱导空气等离子体特性的研究提供重要实验基础,为今后激光大气传输、大气组成分析提供重要的技术支持.  相似文献   
23.
In order to investigate the influence of steam ingestion on the aerodynamic stability of a two-stage low-speed axial-flow compressor, multiphase flow numerical simulation and experiment were carried out. The total pressure ratio and stall margin of the compressor was decreased under steam ingestion. When the compressor worked at 40% and 53% of the nominal speed, the stall margin decreased, respectively, by 1.5% and 6.3%. The ingested steam reduced the inlet Mach number and increased the thickness of the boundary layer on the suction surface of the blade. The low-speed region around the trailing edge of the blade was increased, and the flow separation region of the boundary layer on the suction surface of the blade was expanded; thus, the compressor was more likely to enter the stall state. The higher the rotational speed, the more significant the negative influence of steam ingestion on the compressor stall margin. The entropy and temperature of air were increased by steam. The heat transfer between steam and air was continuous in compressor passages. The entropy of the air in the later stage was higher than that in the first stage; consequently, the flow loss in the second stage was more serious. Under the combined action of steam ingestion and counter-rotating bulk swirl distortion, the compressor stability margin loss was more obvious. When the rotor speed was 40% and 53% of the nominal speed, the stall margin decreased by 6.3% and 12.64%, respectively.  相似文献   
24.
ABSTRACT

This study was to investigate the piezotolerance and diversity indices of microflora of Indian white prawn (Fenneropenaeus indicus) after high pressure (HP)-treatment. Indian white prawns subjected to HP-treatments and its effect was studied up to species level and compared with unpressurized samples. The bacterium was identified by using bacterial identification schemes, biochemical tests and API kits (bioMérieux, Marcyl’Etoile, France). Diversity analysis was performed using PRIMER (Plymouth Routines in Multivariate Research) software v 5.2.2. The significant elimination of microflora was found to be proportional with the pressure level. In the case of spore formers, mere destruction was noticed after HP-treatment. Arthrobacter spp., Listeria grayi and Corynebacterium spp. were the most piezotolerant bacteria in HP-treated samples. Diversity indices revealed a significant reduction of microflora of Indian white prawn. The apparent reduction of microflora with pressure level was clearly evident from the diversity indices; moreover a diminished piezotolerance of Gram negative spoilage bacteria was also observed.  相似文献   
25.
Hydrostatic pressure Raman and synchrotron XRD measurements at room temperature have been carried out on a series of NdFeAsO1−xFy (Nd1111) oxypnictides in order to investigate pressure-induced lattice modifications. The synchrotron XRD data indicate that there is an increased deviation of the lattice constants from smooth pressure dependence in the superconducting compound, in close agreement with the results from SmFeAsO1−xFx (Sm1111), although the effect is less pronounced in Nd1111. As in Sm1111 the hydrostatic pressure Raman measurements show that the A1g mode of the rare earth atom deviates from the linear pressure dependence. Anomalous pressure dependence and a hysteresis is observed in the phonon width of the phonon modes. The calculated Grüneisen parameter for the Nd phonon is very similar to the corresponding value for SmFeAsO1−xFx compound and it does not vary with substitution. For the As mode it has a lower value indicating a stiffer phonon with the increased ion size. In connection with the XRD measurements the Raman data show a sudden increase of the pressure-induced lattice anomalies close to doping where the compounds become superconducting.  相似文献   
26.
ABSTRACT

Nano-polycrystalline diamond (NPD) with various grain sizes has been synthesized from glassy carbon at pressures 15–25?GPa and temperatures 1700–2300°C using multianvil apparatus. The minimum temperature for the synthesis of pure NPD, below which a small amount of compressed graphite was formed, significantly increased with pressure from ~1700°C at 15?GPa to ~1900°C at 25?GPa. The NPD having grain sizes less than ~50?nm was synthesized at temperatures below ~2000°C at 15?GPa and ~2300°C at 25?GPa, above which significant grain growth was observed. The grain size of NPD decreases with increasing pressure and decreasing temperature, and the pure NPD with grain sizes less than 10?nm is obtained in a limited temperature range around 1800–2000°C, depending on pressure. The pure NPD from glassy carbon is highly transparent and exhibits a granular nano-texture, whose grain size is tunable by selecting adequate pressure and temperature conditions.  相似文献   
27.
The kinetic parameters and enthalpies of the Diels–Alder reactions between cyclopentadiene and 2,3-dicyano-1,4-benzoquinone leading to the formation of two different monoadducts and bisadduct were determined. The stability of adducts is compared. Monoadduct appears to be thermodynamically more stable than the bisadduct. Comparison with the other Diels–Alder reactions studied previously allows us to conclude that the heat effects upon formation of the considered Diels–Alder adducts are the lowest in comparison with all the studied dienophiles.  相似文献   
28.
In the context of better understanding pollutant formation from internal combustion engines, new experimental speciation data were obtained in a high-pressure jet-stirred reactor for the oxidation of three molecules, which are considered in surrogates of diesel fuel, n-heptane, ethylbenzene, and n-butylbenzene. These experiments were performed at pressures up to 10 bar, at temperatures ranging from 500 to 1 100 K, and for a residence time of 2 s. Based on results previously obtained close to the atmospheric pressure for the same molecules, the pressure effect on fuel conversion and product selectivity was discussed. In addition, for the three fuels, the experimental temperature dependence of species mole fractions was compared with simulations using recent literature models with generally a good agreement. For n-heptane, the obtained experimental data, at 10 bar for stoichiometric mixtures, included the temperature dependence of the mole fractions of the reactants and those of 21 products. Interestingly, the formation of species previously identified as C7 diones was found significantly enhanced at 10 bar compared with lower pressures. The oxidation of ethyl- and n-butylbenzenes was investigated at 10 bar for equivalence ratios of 0.5, 1, and 2. The obtained experimental data included the temperature dependence of the mole fractions of the reactants and those of 13 products for the C8 fuels and of 19 products for the C10 one. For ethylbenzene under stoichiometric conditions, the pressure dependence (from 1 to 10 bar) of species mole fraction was also recorded and compared with simulations with more deviations obtained than for temperature dependence. For both aromatic reactants, a flow rate analysis was used to discuss the main pressure influence on product selectivities.  相似文献   
29.
Pitch has been used to prepare electrodes by high-temperature heat treatments for supercapacitors, lithium-ion batteries, on account of its rich aromatic ring structure. Here, the toluene-soluble component of pitch is used to prepare a kind of laminated carbon. This was realized by a template-free synthesis at low temperature with the addition of pressure. The toluene-soluble component has a small molecular weight, which makes the thermal deformation ability stronger and then enhances the orientation of the carbon layer with the help of pressure. The prepared anode exhibits a splendid electrochemical performance compared with the traditional graphite anode. A high stable capacity of approximately 550 mAh g−1 at 50 mA g−1, which is much higher than graphite (372 mAh g−1), is obtained. Also, when the current density is up to 2 A g−1, the capacity is about 150 mAh g−1. Surprisingly, it also delivers a superior cycling performance. And when used as the anode/cathode electrode for lithium-ion capacitors, a high energy density can be obtained. The present work offers an opportunity to utilize the pitch source in lithium energy storage with promising cycle life, high energy/power density, and low cost.  相似文献   
30.
ABSTRACT

Nano-polycrystalline diamonds (NPDs) have become fundamental tools for cutting-edge X-ray absorption spectroscopy (XAS) studies at high P/T conditions that opened up new research directions by overcoming previous limitations. Indeed, NPDs yield a continuous and weak X-ray background signal which enables the collection of high-quality XAS data of materials compressed in diamond anvil cells. This is a critical advantage over the classically used single-crystal diamonds that generate strong parasitic signals (glitches) which render the analysis of XAS data in many cases impossible. In this contribution we give an overview of the impact and the scientific opportunities that NPDs opened up for extreme condition XAS spectroscopy at the European Synchrotron Radiation Facility and discuss future needs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号